

Contact: alexandra.lan@lcmlasia.com

Methodology to reach full spectral photo-protection by selecting the best combination of pigments and antioxidants

Lan, Alexandra^{1*}; Liu, Yan¹; Zuo, Jinhui¹; Lohan, Silke B²; Schanzer, Sabine²; Wiemann, Sabrina ³, Keck, Cornelia M³; Lademann, Jürgen ²; Meinke, Martina C²;

¹ Shanghai Pechoin Daily Chemical Corporation, Shanghai, China; ² Center of Experimental and Applied Cutaneous Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany;³ Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität, Marburg, Germany

Introduction		*			
	0,14 7		□Skin type 1-3	/	
Despite the large number of skin-friendly, UV-absorbing sunscreens, the incidence of skin cancer has been rising sharply for		T	Skin type 4- 5	19 19 19	
decades. In vivo studies on human skin demonstrate, that UV light generates most of the radicals, followed by visible (VIS)	0,12 - n.e			u 0.12 -	
and near infrared (NIR) irradiation. During sun exposure around 60% of all free radicals are produced by UV, the remaining	u 0,10 -			Jucti	
40% are formed by VIS and NIR for skin types I-III (Lohan et al., Exp.Derm 25 (2016), Zastrow et al. Skin Pharmacol Physiol.	u at 80.0 J			bio	
22, 2009). For darker skin types, the percentage in the NIR spectral range even increases (Albrecht et al., Br J Dermatol 180,	nction			iii 0.06 -	(IV-V)
2010) (Figure 1) Due to the use of LIV absorbing subscreeps most consumers extend their sub exposure time without	0,06 -		T	ad	

zora, (rigure r). Due to the use of OV absorbing subscreens, most consumers extend their sub exposure time without considering that they are not protected in the VIS/NIR spectral region, promoting an enhanced radical formation in deeper skin layers. Antioxidants can reduce free radical formation where typical UV chemical filters may no longer be effective (Gabros et al., in: StatPearls, Treasure Island (FL) 2021). Interestingly, in contrast to the synergetic effect of chemical and physical filters in the UV region, we observed that the addition of TiO₂ and ZnO nanoparticles reduce the activity of the antioxidants added to the formulation, which is often not due to the lack of antioxidant analysis of the final product. In this paper, a general method is presented to preselect optimum combinations of antioxidants and pigments.

Figure 1 Radical production in skin for different skin types and wavelengths (Albrecht et al., Br J Dermatol 180 (2019).

	Γ	Materials					Results		
	Analyzed pigr	nents and antioxida	ants		Pre-selection of promising pigments and AOs in solution				
Table 1: Cream formulation	ns codes with impleme	ented pigments in % ar	nd the size of the	pigments.	Different pigments have on the scavenged DPPH, the scavenged DPPH.	lifferent capacities t e more radicals wer	o generate radicals	during UV irradia	tion. The higher same experimental
Cream Code/ Pigments	TiO₂-AIOH Titanium Dioxide, Aluminum Hydroxide, Isostearic Acid	ZnOtriet25 Zinc Oxide, Triethoxy-capryly Isilane	ZnOtriet45 Zinc Oxide, Triethoxy-capr ylylsilane	ZnOpolymyr Zinc Oxide, Polydimethyl- siloxane, Myristic Acid	 condition (table 2, first line). Zinc oxide and ZnOpolymyr showed the lowest radical-generating capacity and ZnOtriet25 the most. Table 2: Scavenged DPPH in % by different pigments during UV irradiation in solution, theoretically calculated amount of selected antioxidants ICx to counteract this radical formation, used amount of selected antioxidants t counteract the radical formation and the factor X between calculated and used amount of selected antioxidants 				nOtriet25 the retically calculated acted antioxidants to lected antioxidants
Diameter in nm*	10	25	25	35		ate, $V = Apria-1000$			
No-pigm	0	0	0	0					
ZnOtriet			10		Pigment	TiO ₂ -AIOH	ZnOtriet25	ZnOtriet45	ZnOpolymyr
ZnOpolymyr				10					
TiO2AIOH+ZnOtriet		10			Scavenged DPPH (%)	45	53	42	23
	·	I			EGCG ICx%	0.000047	0.000062	0.000043	0.000018
To counteract the radical	formation, the follow	ving antioxidants wer	re investigated i	in solution:	EGCG used %	0.000050	0.000010	0.000015	0.000250
	Enicoll	aastaabin Callata (ECC	\sim		X _{EGCG}	0.90	6.20	2.90	0.10

Epigallocatechin Gallate (EGCG)

- Epigallocatechin Gallate EGCG
- Alpha-Tocoperol/Vitamin E (VE)
- Ferulic acid (FA)
- Emblica
- Rosemarinic acid
- Sodium metabisulfite (SM)

Perfect combination

Theory versus Reality

AO ICx% versus AO used %

Sodium metabisulfite (SM)

Methods

Determination of the optimize ratio between physical filters and antioxidants

Step 1

• Ratio finding between pigments and AOs in solution for mixing a promising cream formulation

Prerequisite for the best combination:

- Low radical formation of pigments during irradiation
- Low amount of consumption of AO
- \succ Low costs of antioxidants
- High availability and reproducibility of production of AO
- Various chemical properties (hydrophilic/lipophilic/protein for optimal combinations)

VE ICX%	0.000792	0.001401	0.000681	0.000224	
VE used %	0.00	0.00	0.00	0.001	
X _{VE}	1.0	1.4	0.9	0.2	
SM ICx%	0.04068	0.05383	0.03669	0.01287	
SM used %	0.0075	0.05	0.0025	0.025	
X _{SM}	5.4	1.1	14.7	0.5	
					1

- The antioxidant capacities of six antioxidants against DPPH were analyzed.
- Comparing their IC50 against DPPH: EGCG > Ferulic acid > Rosemarinic acid > Vitamin E > Emblica > Metabisulfite.

Three AO were selected to be combined into a cream formulation + Careosine:

- EGCG: low amount is necessary to counteract radicals formed by all pigments \succ
- VE: strong lipophilic AO, easily available; stabilization of cream formulation
- SM: low-cost, yet effective AO; can prevent colour change in cream formulations

Mix of selected AOs to cream formulations containing three different pigments:

- > ZnOtriet: very good scattering parameters; frequently used
- produces the lowest radical load > ZnOpolymyr:
- \succ Mixture of TiO₂AIOH+: very good scattering parameters, frequently used **ZnOtriet**

Characterization of promising pigments mixed with selected AOs in cream formulations

All samples provide high RPF values:

- No-pigm (containing no pigments but EGCG, VE, SM and carneosine) provided the highest RPF
- \rightarrow Reduction of this high value by addition of different pigments
- \rightarrow ZnOpolymyr reduced the RPF only by 33% to 240.

Table 3: Determination of the RPF of different cream formulations and the scattering coefficient μ_s ' at

Step 2

- One promising AO mixture was selected and combined with different pigments in cream formulations • Investigation of the cream formulations for their antioxidant capacity (radical protection factor, RPF) by electron paramagnetic resonance (EPR) spectroscopy
- Transmittance and reflectance measurements of selected cream formulations by VIS spectroscopy and calculation of absoption μ_a and scattering coefficient μ_s by inverse Monte Carlo simulation

Conclusion

- Reactions in solution are not perfectly transferrable to cream formulations, but preselection in solution is helpful to screen AO candidates
- Radical formation by pigments during UV radiation in solution mainly influence the RPF value in cream
- Combinations of antioxidants are recommendable to cover different requirements.
- High scattering properties are correlated with low antioxidant properties.

Funding

The investigation has been supported by Shanghai Pechoin Daily Chemical Corporation, Shanghai, China and by the Foundation of Skin Physiology, which is incorporated in the Donor Association for the Promotion of Sciences and Humanities in Germany.

400 and 800 nm of the investigated formulation

Cream formulation	RPF in 10 ¹⁴ radicals /mg	μ _s ' at 400 nm in 1/mm	μ _s ' at 800 nm in 1/mm
No-pigm	360 ± 14	4.2	3.4
ZnOtriet	160 ± 9	41.1	16.3
ZnOpolymyr	240 ± 2	30.4	15.5
TiO ₂ +AIOH+ZnOtriet	180 ± 13	43.0	15.5

• Scattering properties increase with particles up to a factor of 10 at 400 nm (Table 3).

• The sample TiO₂AlOH +ZnOtriet containing scattering particles with a concentration of 14% provide the highest µs', closely followed by ZNOtriet25 using only 10% of pigments. Scattering is negatively correlated with RPF

Figure 2: Scattering coefficient μ_s for all creams and the correlation of the RPR and µs'.

50