

Shiseido Nanodisc emulsion: Broadening the horizon of cosmetics.

— Unique oil-water interface from dynamic transformation of vesicles into nanodiscs—

Munakata Hidehito¹; Ueno Kento¹; Uyama Makoto²; Inoue Haruhiko¹; Saito Naoki²; Watanabe Kei^{*2}; Shiseido Brand Value R&D Institute, Yokohama, Japan; 2 Shiseido MIRAI Technology Institute, Yokohama, Japan.

> *Watanabe Kei, 1-2-11, Takashima, Nishi-Ku, Yokohama, Kanagawa 220-0011, JAPAN. +81-70-3859-1896, kei.watanabe@shiseido.com

of emulsifying capacity	By transforming into nanodisc, The interfacial area that can be obtained at the oil-water
ifying capacity (at a concentration of 1.0% Vesicle).	interface is "twice wider" for discs than for spheres
Conventional	

Simultaneously developing an eco-conscious and high functional emulsion

R&D in eco-conscious cosmetics always faces restrictions when it comes to ingredients. This can impact functionality, a major issue in the cosmetics industry. We have succeeded to solve this problem by precisely controlling the emulsion with a novel interfacial membrane.

3.We focused on lamellar liquid crystalline phase as an interfacial membrane having a thin and robust feature.

As a source of lamella liquid crystalline, it is desirable to use a <u>flexible</u> <u>material that has a bulky structure</u> with a smaller amount than general surfactant and can be transformed when adsorbing on the oil-water interface

oil

Our Goal is

Lipophilic group "Flexible & Bulky' Our previous study ^[1] clearly profiled the vesicle characteristics

2. An ideal emulsification?

Thin and robust interfacial membrane with just the minimum amount of surfactant

Thin and robust

necessary and sufficient

Eco-consciousness Minimizes the amount of emulsifier needed

High function

- ► High internal phase ratio
- Texture may be drastically improved, especially oiliness and stickiness

C. Our Focus Points

How silicone vesicle behave around oil-water interface?

How our new system contribute to ecoconsciousness and functionality of cosmetics?

D Benefits for cosmetics industry

1. Pioneering eco-conscious development • reduce consumption of SAA usage • all non-heating process

effective **BUT** too rich texture

- Only for night skincare -

- Whenever I want use!! -

Hydrophilic group

YNYYYY

Lipophilic group

2. Non-oily texture for all oil-rich-required products • most of Sunscreen (UV absorber)

	The present study			tech. (α-gel)
Emulsified oil	Non-polar	Silicon	Polar	Polar
	(Hydrogenated	(Dimethicon	(Triethylhexa	
	polydecene)	e (6cs))	noin)	
Maximum conc.	60%	20%	60%	20-30%

At least double efficiency !

Surprisingly, vesicle emulsified as much as 60% polar oil at only 1.0%, which drastically surpass any conventional emulsification.

What's benefit?

1. Evaluation

The maximum emul

Polar oils are strongly linked to cosmetics function (e.g. skin-barrier effect, Ultraviolet absorbing effect, stabilizing oil-soluble active ingredients effect etc.)

2. Freeze Fracture TEM Images depends on structure

Nanodisc (HLB 8) Insoluble gel (HLB 5) Micelle (HLB 13)

structure Coalescence stability (30% of mixed oil emulsion, Ultracentrifuge 40,000rpm 60min)

- (separated) - (separated) + (stable)

Difference of texture depends on each self-assembly

(oiliness)	– (stickiness)	+ (non-oiliness) (non-stickiness)

3. Texture comparison with conventional technologies Spreadability _ Characteristics of

Vesicle transformed into "Nanodisc"

Freeze Fracture TEM close-up image showing the oil-water interface of emulsion stabilized with nanodiscs. Four white arrows show that lamellar layers of vesicle transformed into nanodiscs when adsorbing to the oil-water interface.

Nanodisc emulsion expands	S
the horizon of cosmetics.	

Vesicle dispersion ^[1]

Materials & Methods:

Materials

PEG-12 dimethicone, HLB (hydrophile lipophile balance) = (5, 8, and 13) (Dow Toray Co., Ltd., Tokyo, Japan).

Methods

1. Evaluation of emulsifying capacity

Nanodisc emulsion shows drastic improvement in oiliness, stickiness compared to conventional emulsion.

4. Neutron Reflectometry

Regular lamellar membrane structures were thinly laminated. Combining with all results, we achieved *thin and robust interfacial* membrane with just the minimum amount of surfactant. Plus, the reason of non-oily and non-sticky texture was demonstrated!

Eco-consciousness

Eco-conscious manufacturing

- Minimize consumption of required SAA for oil
- emulsification (*one thirds of α-gel emulsification*)
- Non-heating process

Opportunity of Biomass ingredients

⁻ The superior emulsification capacity maximize opportunity of welcoming and utilizing naturally derived materials which occasionally fluctuate in quality (e.g. vegetable biomass), leading to the new standard of eco-consciousness for cosmetics industry.

High function

Evolution of sunscreen & Vitamin-A cosmetics Issue that UV absorber and vitamin-A needs much polar oil which show oiliness for the stability of themselves will be solved and refreshing feeling formula is possible.

Super strong coalescence stability

Any formulation could be reduced in viscosity in which consumer can enjoy *high function* and superior feeling even in the morning

- Wide applicability & High inclusivity -

Nanodisc powerfully emulsify large amount of oil regardless of oil type *in eco-conscious way*. Therefore, all researchers can apply this technology to any cosmetics, makeup, sunscreen and of course skincare.

" The possibilities are infinite "

D

Outer phase : wate

Oil

► The present study discovered that nanodisc

Е

emulsification using vesicle aqueous dispersion as the outer phase consisting of PEG-12 dimethicone shows extremely high emulsifying capacity.

► The oil-water interface captured as an actual image *for the first time in the world* showed the vesicles undergo a structural transformation into nanodiscs.

This world first emulsification technology is an ideal silver bullet that can be considered as the next-generation of emulsions, *break* the traditional limitations and make many impossibilities possible.

Acknowledgments:

The NR measurement was performed on a BL16 (Program No. 2018A0008) beamline at MLF, J-PARC. For the allocation of the beamtime, we would like to thank the MLF, J-PARC.

3. Watanabe K, Nishida M, Nishimura K, et al. (2018) High Skin Hydration and Comfortable Texture of a Moisturizing Lotion Fulfilled by Controlling the Phase Sequence of a Vesicle-Micelle Complex. J Soc Cosmet Chem Jpn 52:260–268.