

Ecotoxicological evaluation of Humulus Iupulus

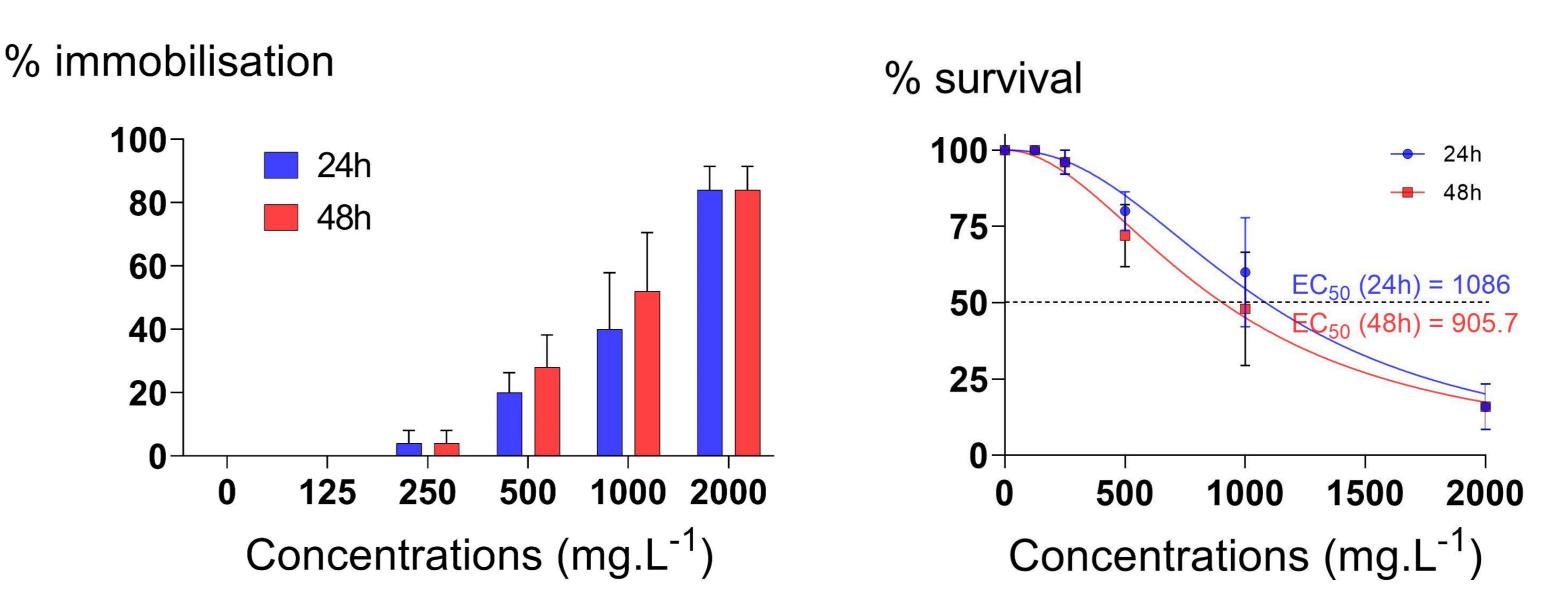
cosmetic grade extracts

EP 665

Susana Coelho^{1,2}; Celso Afonso Ferraz^{1,2}; Carlos Gaspar^{2,3}; Ana Palmeira de Oliveira^{2,3}; M. Ramiro Pastorinho⁴; Ana Catarina Sousa^{1,5*}

¹ NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; ² Health Sciences Research Centre (CICS), University of Beira Interior, Covilhã, Portugal; ³ Labfit–Health Products Research and Development Lda, UBImedical, Covilhã, Portugal; ⁴ Department of Medical and Health Sciences and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; ⁵ Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal

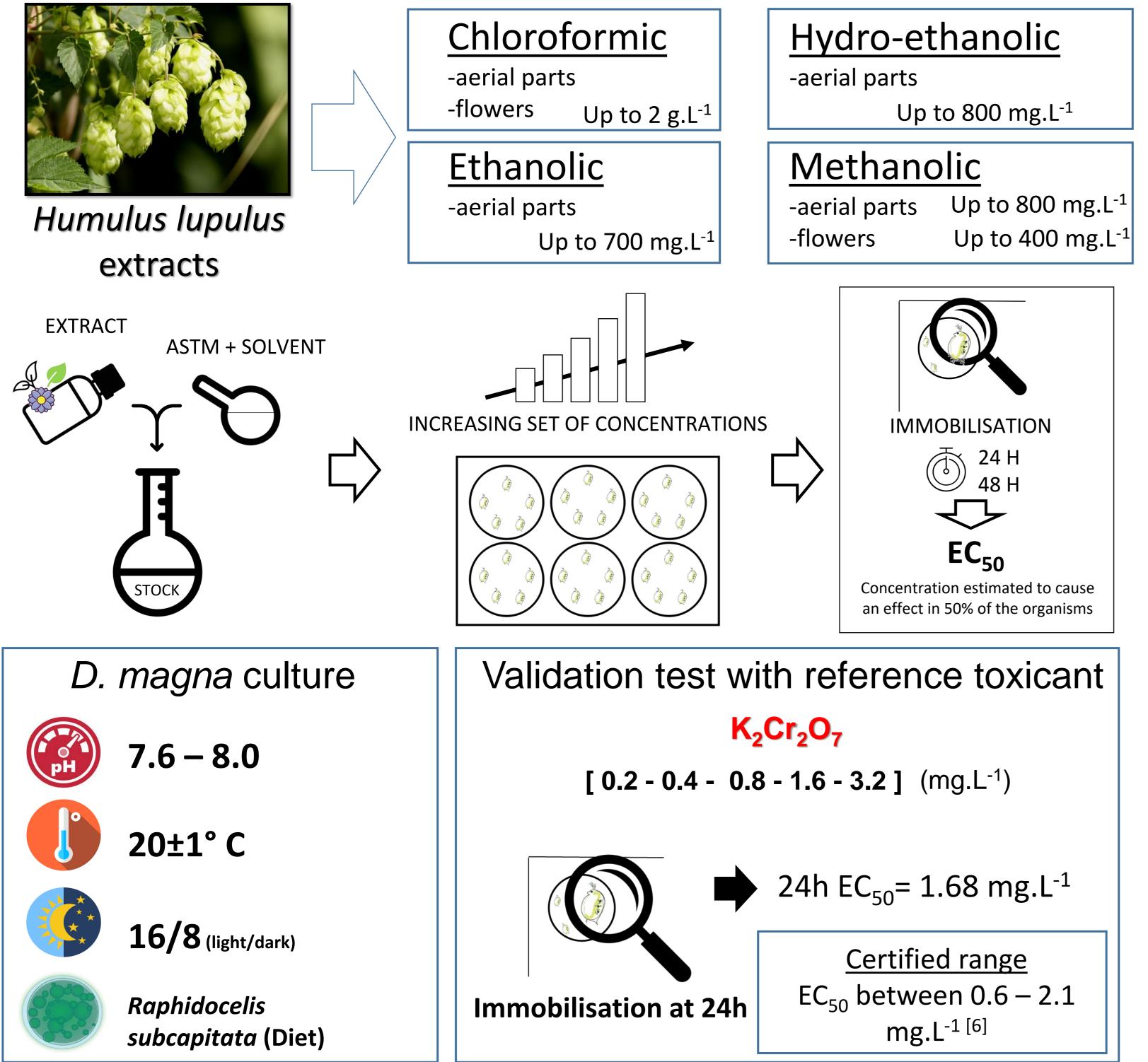
Results & Discussion:


Humulus lupulus L., commonly known as hop, is widely used in beer production ^[1]. However, it has also been used in traditional medicine due to their sedative properties, and also as a treatment for pneumonia, headaches, and skin injuries, among others ^[2,3].

Besides these traditional applications, bioactive compounds are continuously being discovered and extracted from hop. These bioactive compounds have the potential to be used in food, pharmaceuticals and cosmetics^[4].

- In this work, extracts obtained from *H. lupulus* cultivated in Portugal were studied for their properties as a new source of cosmetic ingredients under the framework of the project INOVEP.
- Considering their prospective industrial aplication a thorough risk assessment must be performed. In this line, and following the *Precautionary Principle* underlying European law, the environmental safety of *H. lupulus* extracts was studied using *Daphnia magna*, a recommended organism to perform aquatic toxicity tests ^[5].

Materials & Methods:



- Only the chloroformic extract obtained from the flowers caused observable immobilisation of *D. magna* after 48h of exposure, although at very high concentrations.
- The obtained EC₅₀ values varied from 1086 mg.L⁻¹ after 24h of exposure to 905.7 mg.L⁻¹ after 48h of exposure.
- All the other extracts did not cause observable effects on *D. magna* up to the highest concentrations tested.

Acute toxicity tests with *Daphnia magna*

According to the OECD Guideline no. 202^[5]

According to the Globally Harmonised System for Classification and Labelling of Chemicals (GHS) proposed by the United Nations (UN) ^[7],

all the extracts tested can be classified as not toxic to aquatic systems.

Acute toxicity results of the different *H. lupulus* extracts tested and GHS classification

Type of extract	Parts used	48h EC ₅₀ (mg.L ⁻¹)	GHS Classification ^[7]
Chloroformic	Aerial parts	> 2000	Not classifiable as toxic to
	Flowers	905.70	
Ethanolic	Aerial parts	> 400	aquatic systems
Hydro-ethanolic	Aerial parts	> 800	
Methanolic	Aerial parts	> 800	(48h EC ₅₀ > 100 mg.L ⁻¹)
	Flowers	> 400	

All the tested extracts showed no acute effects to Daphnia magna up to the limit concentration to be considered toxic to aquatic life (>100 mg.L⁻¹) according to the Globally Harmonized System for Classification and Labelling of Chemicals (GHS) of the United Nations.

Aknowledgments:

This work was supported by "INOVEP project – Innovation with Plant Extracts", I&DT projects for companies in collaboration with scientific entities, project number 33815, Centro2020. Further financial support was provided by Fundação Ciência e Tecnologia, IP to the Health Sciences Research Center, University of Beira Interior (CICS-UBI) through the project UID/Multi/00709/2019) and to the Comprehensive Health Research Centre (CHRC), University of Evora, through the project UIDP/04923/2020. C.A. Ferraz acknowledges the financial support from University of Beira Interior through the scholarship co-funded by the European Social Fund -P2020/POISE and the support by the Regional Direction for Higher Education from the Autonomous Region of Madeira and the Municipality of Câmara de Lobos.

References:

[1] Ramírez, A. and J.M. Viveros, Brewing with Cannabis sativa vs. Humulus lupulus: a review. Journal of the Institute of Brewing, 2021. [2] Zanoli, P. and M. Zavatti, Pharmacognostic and pharmacological profile of Humulus lupulus L. Journal of Ethnopharmacology, 2008. 116(3): p. 383-396. [3] Chadwick, L.R., G.F. Pauli, and N.R. Farnsworth, The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine, 2006. 13(1): p. 119-131. [4] Krause, E., et al., Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement. Biomedical Chromatography, 2014. 28(6): p. 729-734. [5] OECD (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test. [6] ISO (2012). ISO 6341:2012. Water quality—Determination of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute toxicity test. [7] UN (2019). Globally Harmonized System of Classification and Labelling of Chemicals (GHS), United Nations.